Introduction/Statement of the Problem:
A 59 year-old male presented to a tertiary care center with a 2 month history of worsening lower back pain. Two months prior to presentation, the patient had gone to Mexico and received multiple stem cell injections from donor placenta into the lumbar intervertebral disc at multiple levels. Since these injections, his back pain had progressively worsened. An MRI was performed and revealed L3-L5 epidural/paravertebral abscess with discitis and osteomyelitis.

Results:
Bone biopsy results were positive for candida parapsilosis and negative for bacteria. A gallium scan confirmed the infection. The patient was started on vancomycin, cefipime and fluconazole. An L2-L5 laminectomy and I&D were performed by neurosurgery. Following surgery, the patient was transferred to a rehabilitation unit. He remained on antibiotics and antifungals for 6-weeks. Repeat MRI showed improvement in epidural abscess, discitis and osteomyelitis. Antimicrobials were discontinued and the patient was discharged home. Follow-up gadolinium scan 3-months after discharge verified infection resolution.

Conclusion:
Stem cell injections have been available for purchase in the global health marketplace in recent years. Mexico has a flourishing stem cell industry, utilizing donor placenta as a source for stem cells to treat a variety of ailments, such as chronic discogenic pain, cerebral palsy, autism, and paralysis. Prior studies in mice have shown the viability of stem cell treatments for degenerative discs, and it may be a promising treatment modality. However, this patient's presentation demonstrates the catastrophic complications that can result from medical tourism for stem cell injections. Medical tourism for stem cell injections should be considered high risk.

References:

Image 1A-D. Sagittal (A) T1-weighted image of the lumbar spine demonstrates decreased signal in the L3-4 and L4-5 disc spaces, with adjacent vertebral marrow hypointensity in the L3 to L5 vertebral bodies. Sagittal (C) T1 fat-saturated post-gadolinium images of the lumbar spine demonstrate avid enhancement of the aforementioned vertebral bodies and disc margins. Findings are consistent with L3-5 osteomyelitis/discitis. Comparison of sagittal (A) and axial (B) T1-weighted images against post-contrast images (C, D) demonstrates circumferential enhancing epidural material from the levels of L3 to L5, consistent with epidural phlegmon.

Image 2A-B. Sagittal T1 (A) and T1 fat-saturated post-gadolinium (B) images of the lumbar spine performed 7 weeks later demonstrate marked improvement in previously noted vertebral body and disc space signal abnormalities, consistent with resolving osteomyelitis/discitis. There has also been interval decrease in epidural phlegmon, with minimal persistent epidural enhancement. Interval compression fracture involving the L1 vertebral body was noted, with anterior wedging and Gibbus deformity.